المياه

الخواص الفيزيائية والكيميائية للماء

يمكن إيراد الخواص الكيميائيّة والفيزيائيّة الأساسيّة للماء على شكل النقاط التالية:

  • الماء سائل عند ظروف الضغط والحرارة القياسيّة المحيطة وذلك عند 298.15 كلفن (25 °س) وضغط 100,000 باسكال (1 بار، 14.5 بساي، 0.99 جو)، وهو عديم المذاق، كما أنّه عديم اللون عندما يكون بكمّيّات صغيرة، إلّا أنّه يأخذ لوناً أزرق عند ازدياد عمق الطبقات، وتلك خاصّيّة في أصل وجوهر الماء، ويعود سببها إلى امتصاص انتقائي في المجال الأحمر من الطيف المرئي وتبعثر للضوء الأبيض، أمّا بخار الماء فهو أساساً غاز عديم اللون.
  • تتكون بنية الماء الجزيئيّة نظريّاً بحيث تقع ذرّة الأكسجين في مركز بنية جزيئيّة رباعيّة السطوح تقع فيها ذرّتا الهيدروجين بالإضافة إلى الزوجين الإلكترونيّين (الموجودين على ذرّة الأكسجين) على زوايا الشكل رباعي السطوح. ولكنّ الشائع أنّ البنية الجزيئيّة للماء منحنية وغير خطّيّة، إذ تبلغ زاوية الرابطة H-O-H مقدار 104.45°. تلك القيمة من زاوية الرابطة أصغر من القيمة النظاميّة لرباعي السطوح 109.47، ويعود ذلك إلى تدافع الزوجين الإلكترونيين ليشغلا أبعد مسافة ممكنة عن بعضهما حسب نظرية فيسبر. يبلغ طول الرابطة O-H في جزيء الماء 95.84 بيكومتر.

خاصّيّة التوتّر السطحي للماء

  • بما أنّ كهرسلبية ذرّة الأكسجين حسب مقياس باولنغ (3.5) أعلى من ذرّة الهيدروجين (2.1)، تحمل ذرّة الأكسجين شحنة سالبة جزئية؛ في حين تحمل ذرّة الهيدروجين شحنة موجبة جزئية، بالتالي يكون الماء جزيئاً قطبيّاً ذا عزم ثنائي قطب يبلغ مقداره 1.84 ديباي. يستطيع الماء على أساس ذلك أن يشكّل روابط هيدروجينيّة بين جزيئيّة. تؤدّي هذه العوامل إلى وجود قوّة ترابط بين جزيئيّة قويّة، ممّا يفسّر ظهور خاصّيّة التوتّر السطحي الكبيرة للماء، بالإضافة إلى الخاصّيّة الشعريّة. تفسّر خاصّيّة التوتّر السطحي للماء ظاهرة إمكانيّة وقوف الحشرات خفيفة الوزن على سطح الماء، بالإضافة إلى إمكانيّة تشكّل القطرات؛ في حين أنّ الخاصّيّة الشعريّة، والتي تشير إلى ميل الماء إلى الصعود إلى أعلى أنبوب شعري رفيع بشكل معاكس لقوة الجاذبية، خاصية مهمة وحيوية عند النباتات الوعائية مثل الأشجار.
  • يعدّ الماء من المذيبات القطبيّة الجيّدة، وعادةً ما يشار إليه على أنّه “مذيب عام”. تُعرَّف المواد الكيميائيّة القابلة للانحلال (الذوبان) في الماء بأنّها مواد محبّة للماء (هيدروفيليّة)، مثل الأملاح والسكّريّات والأحماض والقلويّات وبعض الغازات مثل الأكسجين وثنائي أكسيد الكربون. بالمقابل، تعرّف المواد الكيميائيّة التي تكون غير قابلة للامتزاج مع الماء (مثل الدهنيّات (الزيوت والشحوم وغيرها) بأنّها كارهة للماء (هيدروفوبيّة). من جهة أخرى يمتزج الماء مع العديد من السوائل كالكحولات (الإيثانول مثلاً) بكافة النسب مشكّلاً مزيجاً له صفات معيّنة، منها كونه ثابت الغليان (مزيج أزيوتروبي). ولكن بالمقابل لا يمتزج الماء مع أغلب الزيوت العضويّة، إذ تشكّل الأخيرة طبقة ذات كثافة أقل تطفو على سطح الماء.

البنية الجزيئية للماء

تمثيل للروابط الهيدروجينية بين جزيئات الماء

  • تعتمد قيمة نقطة غليان الماء (كما هو الحال في كافة السوائل) على قيمة الضغط الجوّي المحيط. على سبيل المثال، فإنّ الماء النقيّ يغلي عند مستوى سطح البحر عند الدرجة 100 °س، في حين أنّه يغلي عند الدرجة 68 °س عند قمّة جبل إيفرست (8,848 م فوق سطح البحر). عند إذابة المواد القابلة للانحلال في الماء ترتفع نقطة غليان الماء وتنخفض نقطة تجمّده.
  • تبلغ قيمة السعة الحراريّة النوعيّة للماء 4181.3 جول/(كغ·كلفن)، وهي قيمة مرتفعة نسبياً بالمقارنة مع باقي المركّبات الكيميائيّة، كما أنّ حرارة التبخّر لديه مرتفعة (2257 كيلوجول/كغ) أيضاً. يعود ارتفاع هذه القيم إلى الروابط الهيدروجينيّة بين جزيئات الماء. تساهم تلك القيم المرتفعة في جعل مناخ الأرض معتدلاً وذلك بامتصاص التباينات والتأرجحات الكبيرة في درجة الحرارة.
  • للماء كثافة مقدارها 1000 كغ/م3 (تعادل 1 غ/مل) عند الدرجة 4° س، أمّا الجليد فكثافته تبلغ 917 كغ/م3. تكون لكثافة الماء قيمة أعظمية عند الدرجة 3.98 °س، وبعد ذلك تميل للتناقص، وذلك على العكس من أغلب المواد النقيّة الأخرى، والتي تزداد كثافتها عندما تنخفض درجة حرارتها. يعود التناقص في قيمة الكثافة إلى البنية المفتوحة غير المتراصّة للجليد والذي يبدأ بالتشكّل تدريجيّاً في الماء ذي درجة الحرارة المنخفضة (دون 3.98 °س)، إذ لا توجد طاقة حرارية كافية لتأمين توجّهات الحركة العشوائيّة للجزيئات، ممّا يؤدّي إلى اصطفافها على المستوى الجزيئي ولكن ببنية مفتوحة منتظمة، ممّا يؤدّي إلى ازدياد الحجم العام للسائل؛ ولذلك فإنّه بين درجتي الحرارة 3.98 °س و 0 °س يزداد الحجم مع تناقص درجة الحرارة. يتمدّد الماء ليشغل حجماً أكبر بنسبة 9% من حجم الجليد، بالتالي ستكون كثافة الجليد أقلّ من كثافة الماء، لذلك يطفو الجليد على سطح الماء السائل، كما هو الحال في الجبال الجليديّة.
  • للماء النقي موصليّة كهربائيّة ضعيفة، ولكنّها تزداد عند إذابة كمّيّة قليلة من مادّة أيونيّة مثل كلوريد الصوديوم.
  • عند تطبيق طاقة كافية على الماء تفوق كمّيّة الحرارة القياسيّة للتكوين والتي تبلغ 285.8 كيلوجول/مول (15.9 ميغاجول/كغ) يحدث عندئذ انفصال لجزيء الماء إلى مكوّناته من الهيدروجين والأكسجين، وهذا ما يحدث عند تطبيق جهد مرتفع من التيّار الكهربائي بشروط معيّنة للحصول على ظاهرة التحليل الكهربائي للماء. إنّ الطاقة اللازمة لفصل الماء إلى الهيدروجين والأكسجين عبر التحليل الكهربائي أو وسيلة أخرى تفوق الطاقة المستحصلة من تفاعل اتحاد العنصرين المذكورين. يمكن أن يتم التحليل الكهربائي للماء على مستوى تعليمي عبر جهاز هوفمان لتحليل الماء:
  • يصنّف الماء كيميائيّاً على أنّه أكسيد للهيدروجين، وهو يتشكّل عندما يحترق الهيدروجين أو أيّ مركّب حاوٍ عليه بالأكسجين، وهو مزيج انفجاري. تستطيع العناصر الكيميائيّة الأكثر كهرسلبية من الهيدروجين مثل الليثيوم والصوديوم والكالسيوم والبوتاسيوم والسيزيوم أن تزيح الهيدروجين من الماء مشكّلة بذلك الهيدروكسيدات الموافقة.
  • يوصف الماء بأنّه عَسِر عندما تكون نسبة الأملاح المعدنيّة في الماء عالية، وخاصّة أملاح الكالسيوم (Ca+2) والمغنسيوم (Mg+2)، بالإضافة إلى بعض الأملاح المنحلّة من البيكربونات والكبريتات. بالمقابل، يوصف الماء غير العسر أنه “ماء يَسِر”، ويختلف تعريفه حسب الدولة، فهو الذي تركيزه من الأملاح أخفض من 100 مغ/ل في المملكة المتّحدة، وأخفض من 60 مغ/ل في الولايات المتّحدة الأمريكيّة. لهذه الخاصّيّة أهمّيّة في الصناعة بشكل خاص وخاصة في المراجل عند التبخير، كما أنّ لها تأثير على الصحّة، لذلك تخضع عادة إلى عملية إزالة للعسر.
  • يمكن إجراء تفاعل كشف عن الماء بأساليب لاعضويّة تقليديّة، إذ أنّ الماء يلوّن ملح كبريتات النحاس الثنائي اللامائي أبيض اللون إلى اللون الأزرق، كما يتحوّل لون الورق المشبّع بملح كلوريد الكوبالت الثنائي اللامائي من الأزرق إلى الأحمر عند التماس مع الماء. أمّا تحليليّلاً فتحدّد كمّيّة الماء باستخدام طريقة كارل-فيشر.
  • التعادل الحمضي: الماء سائل متعادل كيميائيّاً، إذ أنّ درجة الحموضة أو القاعدية فيه هي 7، وهذا يعني أنّه لا يمكن اعتبار الماء مادّة حمضيّة أو قاعديّة، لأنه مادّة متعادلة كيميائيّاً.
  • حسب توزّع نظائر الهيدروجين وتركيبها فيمكن لجزيء الماء أن يكون بالإضافة إلى الشكل الشائع “الخفيف” على شكل ماء ثقيل عندما يكون نظير الهيدروجين الديوتيريوم مكان الأول في جزيء الماء (D2O)، كما يمكن أن يكون على الشكل ماء فائق الثقل عندما يحلّ التريتيوم مكان الهيدروجين في جزيء الماء (T2O).
الخاصّيّة ملاحظات الأهمّيّة
حالات المادّة المادّة الوحيدة التي توجد طبيعياً في حالاتها الثلاثة (أطوار المادة) على شكل صلب وسائل وغازي على سطح الأرض انتقال الحرارة بين المحيط والغلاف الجوّي عبر التحوّل الطوري.
قابليّة الإذابة يستطيع الماء إذابة الكثير من المواد بكمّيّات جيّدة بشكل أكبر من أيّ مادّة سائلة معروفة خاصّيّة مهمّة جدّاً في العمليّات الكيميائيّة والفيزيائيّة والحيويّة.
الكثافة الكتليّة تحدّد قيمة كثافة الماء حسب درجة الحرارة والملوحة والضغط (العوامل مرتّبة حسب الأهمّيّة). تبلغ كثافة الماء النقي قيمتها العظمى عند 4 °س، أمّا مياه البحر فإنّ نقطة التجمّد تتناقص مع ازدياد الملوحة خاصّيّة تتحكّم في الجريان العمودي للتيّارات المائيّة في المحيطات، وتساهم في توزيع الحرارة، وتساهم في التدرّج المائي الموسمي.
التوتّر السطحي أعلى قيمة بين السوائل الشائعة تتحكّم في تشكّل القطرات؛ مهمّة في علم وظائف الخليّة في جسم الإنسان.
الموصليّة الحراريّة أعلى قيمة بين السوائل الشائعة مهمّة على نطاق ضيّق خاصة على المستوى الخلوي.
السعة الحراريّة أعلى قيمة بين السوائل الشائعة تفيد في امتصاص التقلّبات في درجة الحرارة والحفاظ على اعتدال مناخ الأرض.
حرارة الانصهار أعلى قيمة بين السوائل الشائعة التحكّم في الحرارة وضبطها كأثر لانتشار الحرارة عند التجمّد وامتصاصها عند الانصهار.
قرينة الانكسار تزيد مع ازدياد الملوحة وتتناقص مع ازدياد درجة الحرارة تبدو الأشياء أقرب منها في الماء من الهواء.
الشفافيّة عالية في المجال المرئي، والامتصاص يتم في المجال تحت الأحمر وفوق البنفسجي مهمّة من أجل التركيب الضوئي.
نقل موجات الصوت جيّدة بالمقارنة مع السوائل الأخرى تمكّن من قياس الأعماق بالموجات الصوتيّة.
قابليّة الانضغاط ضئيلة تغيّر ضئيل للكثافة مع ازدياد العمق.
نقطة الغليان والانصهار مرتفعة تتيح وجود الماء على شكل سائل على سطح الأرض.

المصدر: ويكيبيديا

إغلاق